Eskolemization in Intuitionistic Logic
نویسندگان
چکیده
In [2] an alternative skolemization method called eskolemization was introduced that is sound and complete for existence logic with respect to existential quantifiers. Existence logic is a conservative extension of intuitionistic logic by an existence predicate. Therefore eskolemization provides a skolemization method for intuitionistic logic as well. All proofs in [2] were semantical. In this paper a proof-theoretic proof of the completeness of eskolemization with respect to existential quantifiers is presented.
منابع مشابه
AN ALGEBRAIC STRUCTURE FOR INTUITIONISTIC FUZZY LOGIC
In this paper we extend the notion of degrees of membership and non-membership of intuitionistic fuzzy sets to lattices and introduce a residuated lattice with appropriate operations to serve as semantics of intuitionistic fuzzy logic. It would be a step forward to find an algebraic counterpart for intuitionistic fuzzy logic. We give the main properties of the operations defined and prove som...
متن کاملEvaluating Construction Projects by a New Group Decision-Making Model Based on Intuitionistic Fuzzy Logic Concepts
Select an appropriate project is a main key for contractors to increase their profits. In practice, in this area the uncertainty and imprecise of the involved parameters is so high. Therefore, considering fuzzy sets theory to deal with uncertainly is more appreciate. The aim of this paper is present a multi-criteria group decision-making model under an intuitionistic fuzzy set environment. Henc...
متن کاملIntuitionistic fuzzy logic for adaptive energy efficient routing in mobile ad-hoc networks
In recent years, mobile ad-hoc networks have been used widely due to advances in wireless technology. These networks are formed in any environment that is needed without a fixed infrastructure or centralized management. Mobile ad-hoc networks have some characteristics and advantages such as wireless medium access, multi-hop routing, low cost development, dynamic topology and etc. In these netwo...
متن کاملTruth Values and Connectives in Some Non-Classical Logics
The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...
متن کاملOn Extensions and Variants of Dependence Logic — A study of intuitionistic connectives in the team semantics setting
Dependence logic is a new logic which incorporates the notion of “dependence”, as well as “independence” between variables into first-order logic. In this thesis, we study extensions and variants of dependence logic on the first-order, propositional and modal level. In particular, the role of intuitionistic connectives in this setting is emphasized. We obtain, among others, the following result...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Log. Comput.
دوره 21 شماره
صفحات -
تاریخ انتشار 2011